metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhong-Hai Ni, Hui-Zhong Kou,* Li-Fang Zhang, Yun-Bo Jiang and Ai-Li Cui

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail: kouhz@mail.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.034 wR factor = 0.112 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A cyano-bridged trimeric complex $[Mn(CH_3OH)_2(H_2O)_2][Fe(bpb)(CN)_2]_2 \cdot 2H_2O$ $[bpb^{2-}$ is 1,2-bis(pyridine-2-carboxamido)-benzenate]

The structure of the title complex, diaquadi- μ -cyano-dicyano-dimethanolbis[N,N'-o-phenylenebis(pyridine-2-carboxamidato)]diiron(III)manganese(II), [MnFe₂(C₁₈H₁₂N₄O₂)₂(CN)₄-(CH₄O)₂(H₂O)₂]·2H₂O, consists of neutral centrosymmetric [Mn(CH₃OH)₂(H₂O)₂][Fe(bpb)(CN)₂]₂ heterotrinuclear units [bpb²⁻ = 1,2-bis(pyridine-2-carboxamido)benzene(2-)] and water molecules of crystallization. Each [Fe(bpb)(CN)₂]⁻ unit acts as a monodentate ligand through one of its two cyanide groups toward the central Mn^{II} ion (site symmetry $\overline{1}$) in a bent fashion [C-N-Mn = 159.7 (2)°]. Received 25 February 2005 Accepted 24 March 2005 Online 31 March 2005

Comment

In the past two decades, much attention has been paid to assembling cyano-bridged hybrid Prussian blue complexes as possible new molecular magnetic materials using hexacyanometalate units $[M(CN)_6]^{q-}$ (M = Fe, Cr, Mn or V) as paramagnetic building blocks. More recently, a new synthetic strategy for assembling cyano-bridged complexes has been developed, based on the introduction of more versatile building blocks $[M(L)_x(CN)_y]^{q-}$ (M = Fe, Cr or Ru; L represents a blocking ligand), for example, $[M(bipy)CN_4]^-$ (M = Feand Cr) (Lescouezec *et al.*, 2003) and $[M(L)(CN)_3]$ [M = Fe and Cr; L = 1,3,5-triaminocyclohexane (tach) (Yang et al., 2003), L = 1,4,7-triazacyclononane (tacn) (Berseth et al., 2002)]. This strategy results in a wide variety of molecular structures over a range of dimensionalities, including binuclear and polynuclear complexes, one-dimensional chain-like complexes, as well as two-dimensional networks with fascinating magnetic properties.

Manganese(III) Schiff base units have been shown to be very good building blocks in assembling cyano-bridged complexes with interesting properties because the high-spin

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry code (-x, -y, -z).

Figure 2

The hydrogen-bonded network in (I). Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted.

 $Mn^{3+}(3d^4)$ ion has both relatively large anisotropy and more unpaired electrons than low-spin Mn^{3+} ions. In this paper, we report the title bimetallic trinuclear complex, (I) (Fig. 1 and Table 1), that arose as an unexpected product from our attempts to construct a cyano-bridged [Mn^{III}(salphen)-Fe(bpb)(CN)₂]_n [H₂salphen = bis(salicylaldehyde)phenylenediimine and bpb²⁻ = 1,2-bis(pyridine-2-carboxamido)benzene(2-)] neutral chain-like complex.

The centrosymmetric complex has a sandwich-like structure made up of a neutral trinuclear entity of formula $[Mn(CH_3OH)_2(H_2O)_2][Fe(bpb)(CN)_2]_2\cdot 2H_2O$, in which each $[Fe(bpb)(CN)_2]^-$ unit uses one of its two cyanide groups to coordinate to the central Mn^{II} ion. The bridging Mn-N1-C1 bond angle deviates significantly from linearity [159.75 (19)°], which is common in cyano-bridged complexes, although a perfectly linear cyano bridge has occasionally been observed (Zhou *et al.*, 2002). The intramolecular Fe···Mn separation through the bridging cyanide ion is 5.203 (1) Å.

The iron(III) ion in (I) is coordinated by four bpb^{2-} N atoms and two cyanide C atoms, in a slightly distorted octahedral geometry. The Fe-C1 (unbridging cyano) and Fe-C2

(bridging cyano) bond distances are almost identical at 1.965 (2) and 1.969 (2) Å, respectively. The Fe-C-N bond angles are almost linear (Table 1). The Fe-N bond distances range from 1.8842 (19) to 1.969 (2) Å, close to that for related Fe-bpb complexes (Ray *et al.*, 1993; Ni *et al.*, 2005). The short Fe-N(imide) bond distances suggest the presence of strong donor-acceptor interactions between the iron(III) species and the imide N atoms. This might be due to the steric strain of the rigid bpb ligand.

The Mn^{II} ion in (I) is hexacoordinated by two cyanide N atoms from two $[Fe(bpb)(CN)_2]^-$ units in *trans* positions and four O atoms from two water molecules and two methanol molecules, yielding a MnO₄N₂ grouping. The Mn-N(cyano) bond distance of 2.195 (2) Å is slightly longer than those in $[(Tp)Fe(CN)_3]_2[Mn(CH_3OH)_4]\cdot 2CH_3OH$ [2.174 (2) Å; Wang *et al.*, 2004] and $[Fe(bipy(CN)_4]_2[Mn(H_2O)_4]\cdot 4H_2O$ [2.183 (6) Å; Lescouezec *et al.*, 2002].

Between the cyano-bridged trinuclear complexes, uncoordinated water molecules are present, and these form $O-H\cdots O$ bonds to the coordinated water molecules (Table 2). Also, a methanol molecule interacts with an imide O atom of a neighbouring complex, as shown in Fig. 2.

The formation of (I) involves the redox reaction of Mn^{III} ions with the Schiff base ligand. A similar phenomenon has been observed during the reaction between $(Me_4N)_2K_2[Nb_6Cl_{12}(CN)_6]$ and $[Mn(salen)]ClO_4$ to yield $(Me_4N)_2[MnNb_6Cl_{12}(CN)_6]$ (Yan *et al.*, 2003).

Experimental

[Mn(salphen)]ClO₄ (Przychodzen *et al.*, 2004) and K[Fe(bpb)(CN)₂] (Ray *et al.*, 1993) were synthesized using literature procedures. Black block-like single crystals of (I) suitable for X-ray diffraction analysis were obtained at room temperature by the slow diffusion of a methanol solution (5 ml) of [Mn(salphen)]ClO₄ (46.8 mg 0.1 mmol) into a mixed methanol–water solution (5 ml) of K[Fe(bpb)(CN)₂] (46.1 mg, 0.1 mmol) for about one week.

Crystal data	
$MnFe_2(C_{18}H_{12}N_4O_2)_2(CN)_4$ -	$D_x = 1.530 \text{ Mg m}^{-3}$
$(CH_4O)_2(H_2O)_2]\cdot 2H_2O$	Mo $K\alpha$ radiation
$M_r = 1039.50$	Cell parameters from 1748
Monoclinic, $P2_1/c$	reflections
a = 14.011 (3) Å	$\theta = 2.4-22.5^{\circ}$
b = 13.247 (2) Å	$\mu = 0.98 \text{ mm}^{-1}$
c = 12.701 (2) Å	T = 293 (2) K
$\beta = 106.834 \ (15)^{\circ}$	Block, black
V = 2256.5 (7) Å ³	$0.25 \times 0.18 \times 0.14 \text{ mm}$
Z = 2	
Data collection	
	B 0.025

 $R_{\rm int}=0.025$ Bruker P4 diffractometer $\theta_{\rm max} = 25.0^{\circ}$ ω scans Absorption correction: ψ scan $h = -16 \rightarrow 15$ (North et al., 1968) $k = 0 \rightarrow 15$ $T_{\min} = 0.820, \ T_{\max} = 0.873$ $l=0\rightarrow 15$ 4141 measured reflections 3 standard reflections 3946 independent reflections every 97 reflections 3403 reflections with $I > 2\sigma(I)$ intensity decay: none

metal-organic papers

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0744P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.034$	+ 0.0733P]
$wR(F^2) = 0.112$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
3946 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
309 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Fe-N5	1.8842 (19)	Mn-O1W	2.1876 (17)
Fe-N4	1.8958 (18)	Mn-N1	2.195 (2)
Fe-C1	1.966 (2)	Mn-O3	2.2007 (17)
Fe-C2	1.969 (2)	C2-N2	1.139 (3)
Fe-N6	2.0014 (19)	C1-N1	1.138 (3)
Fe-N3	2.0067 (19)		
N5-Fe-N4	83.87 (8)	C1-Fe-N3	86.12 (8)
N5-Fe-C1	94.35 (9)	C2-Fe-N3	88.21 (9)
N4-Fe-C1	93.79 (8)	N6-Fe-N3	112.04 (8)
N5-Fe-C2	92.93 (9)	O1W-Mn-N1	92.13 (8)
N4-Fe-C2	92.52 (8)	O1W ⁱ -Mn-N1	87.87 (8)
C1-Fe-C2	170.84 (9)	O1W-Mn-O3	90.61 (7)
N5-Fe-N6	82.22 (8)	O1W ⁱ -Mn-O3	89.39 (7)
N4-Fe-N6	166.05 (8)	N1-Mn-O3	90.93 (7)
C1-Fe-N6	86.15 (8)	N1 ⁱ -Mn-O3	89.07 (7)
C2-Fe-N6	89.33 (8)	N2-C2-Fe	178.3 (2)
N5-Fe-N3	165.72 (8)	N1-C1-Fe	177.0 (2)
N4-Fe-N3	81.85 (8)	C1-N1-Mn	159.75 (19)

Symmetry code: (i) -x, -y, -z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
O1W−H100···O2 ⁱⁱ	0.85	1.91	2.747 (4)	169
$O1W - H101 \cdot \cdot \cdot O2W^{iii}$	0.87	1.86	2.723 (4)	175
$O3-H50\cdots O1^{iv}$	0.85	1.89	2.738 (4)	178
$O2W - H200 \cdot \cdot \cdot O1^{v}$	0.85	1.91	2.738 (4)	164
$O2W-H201\cdots N2$	0.85	2.04	2.881 (4)	173

Symmetry codes: (ii) $-x, y - \frac{1}{2}, -\frac{1}{2} - z$; (iii) x - 1, y, z; (iv) $x, -\frac{1}{2} - y, \frac{1}{2} + z$; (v) $1 - x, \frac{1}{2} + y, -\frac{1}{2} - z$.

The H atoms of the water molecules were found inm difference Fourier maps and normalized to have O-H = 0.85 Å. H atoms bound to C atoms were visible in difference maps and were placed in idealized positions (C-H = 0.93-0.96 Å). All H atoms were refined as riding, with $U_{iso}(H) = 1.2$ or 1.5 times U_{eq} (parent atom).

Data collection: *XSCANS* (Bruker, 1997); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of China (Nos. 20201008 and 50272034).

References

- Berseth, P. A., Sokol, J. J., Shores, M. P., Heinrich, J. L. & Long, J. R. (2002). J. Am. Chem. Soc. 122, 9655–9622.
- Bruker (1997). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lescouezec, R., Lloret, F., Julve, M., Vaissermann, J. & Verdaguer, M. (2002). Inorg. Chem. 41, 818–826.
- Lescouezec, R., Vaissermann, J., Ruiz Perez, C., Lloret, F., Carrasco, R., Julve, M., Verdaguer, M., Dromzee, Y., Gatteschi, D. & Wernsdorfer, W. (2003). *Angew. Chem. Int. Ed.* 42, 1483–1486.
- Ni, Z. H., Kou, H.-Z., Zhao, Y.-H., Zheng, L., Wang, R.-J., Cui, A.-L. & Sato, O. (2005). *Inorg. Chem.* 44, 2050–2059.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Przychodzen, P., Lewinski, K., Balanda, M., Pelka, P., Rams, M., Wasiutynski, T., Guyard-Duhayon, C. & Sieklucka, B. (2004). *Inorg. Chem.* 43, 2967– 2974.
- Ray, M., Mukherjee, R., Richardson, J. F. & Buchanan, R. M. (1993). J. Chem. Soc. Dalton Trans. pp. 2451–2457.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, S., Zuo, J. L., Zhou, H. C., Song, Y., Gao, S. & You, X. Z. (2004). Eir. J. Inorg. Chem. pp. 3681–3687.
- Yan, B., Zhou, H. & Lachgar, A. (2003). Inorg. Chem. 42, 8818-8822.
- Yang, J. Y., Shores, M. P., Sokol, J. J. & Long, J. R. (2003). Inorg. Chem. 42, 1403–1419.
- Zhou, B. C., Kou, H.-Z., He, Y., Xiong, M., Wang, R.-J. & Li, Y. (2002). Acta Cryst. C58, m478–m480.